今天给各位分享诡异的双缝实验的知识,其中也会对诡异的双缝实验视频进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
而这三个现象有是如此的烧脑、违反直觉、毁人三观,所以我们常说双缝干涉实验的结果让人觉得后背发凉,有那么一点“恐怖”的感觉。
我们人类作为一个宏观世界的一部分,在量子力学出现之前我们的科学认知都是建立在现实的确定性之上的,我们科学理论可以完美的解释和预测宇宙中的任何现象。
例如,通过牛顿力学我们可以准确的预测一个事物未来的发展动向,前提是只要知道这个事物初始的状态,以及它未来所经历的相互作用。
1846年,我们更是利用物理和数学预测的方式准确的发现了海王星的位置,可以说这是人类宏观世界科学的一次伟大胜利。
毫不夸张的说,如果有一台超级强大的计算机,它可以根据已有的理论预测出宇宙中所有事物的未来,这就是现实世界的确定性,以及可预测性。
这不仅仅是我们普通人心里的世界观,也是20世界大部分科学家的世界观,爱因斯坦也不例外。但是这一切都被一场物理学的“灵异事件”打破了。
是波还是粒子
微观世界的尺度非常小,都是些原子、电子之类的小玩意,这些东西不仅在生活中看不到,就连科学家也一直被挡在门外,我们真正了解原子、建立模型也就是上个世纪的事。
但是有一个粒子经常在我们眼前晃来晃去,可以说晃了数百万年,那时我们还是树上的猴子,它就是光子!
虽然光子很常见,但是关于光是什么?这个问题人类是想了几千年,直到17世纪牛顿大哥才说光是微粒,是一种实物粒子。
不过当时就有人提出反对意见认为光是波,因为身为粒子的光无法解释光的衍射现象,而且如果光是微粒的话为什么我们看不见两束光发生碰撞呢?这个人就是惠更斯。
由于惠更斯并拿不出任何实验证据,再加之牛顿学霸当时在科学家的威望极高,所以光是微粒就得到人们的认可。
那么关于光到底是什么?就在科学界形成了两个不同的派别:波派和粒派!
粒派所认为的粒子,我们可以将其想象成为一个个光滑的小球,它们遵循实物粒子的运动规律。也就是说,当你打开手电筒的一瞬间既有无数颗光颗粒向炮弹一个沿着直线向外飞奔。
除了牛顿之前所说的实物颗粒,普朗克和爱因斯坦后来也认为光是一种粒子,称为光量子,这个光量子和牛顿的微粒有着本质的区别。量子是一份一份不可分割、且不连续的能量。
波派所认为的波,就类似于我们生活中常见的水波,有波峰、波谷,可以完美的解释光的衍射和干涉现象。
可问题是波和粒子是完全不同的东西,在现实生活中我们看到的事物它是实物粒子就是实物粒子,它是波就是波,不可能存在两面性,我们也无法理解即使波又是粒子的事物。
硬币不是正面就是反面,不可能有即使正面又是反面的硬币,事物不是黑就是白,这就是现实的确定性。所以波派和粒派就持续撕逼了百年,不分胜负。
灵异实验:双缝干涉
也许微观世界有它自己的本质,也许它真的跟宏观世界不一样,也许宇宙真的需要两套不同的理论去解释,也是事物真的存在两面性,也就是波粒二象性,而我们只是各执一词、盲人摸象罢了。
那么光到底是什么?科学家决定做一个实验,这个实验可以完美探测波和粒子的不同特性。双缝干涉实验其实特别简单,就是在光源和探测屏幕之间放一个开了两个狭缝的挡板。
然后用光源向挡板啪啪啪发射光子,然后观察屏幕上的呈现。这个实验无外乎两种可能:
光就是粒子,就是我们所说的实物小球,或者是生活中的石子、子弹,当光经过中间的挡板时,大部分的光会被挡住,只有两条狭缝可以允许光通过,并且光在屏幕上留下两道杠。这就是粒子运动的典型特性。
光是波,它可以像水波那样在经过两条狭缝以后发生干涉,波峰和波峰叠加,波谷和波谷叠加,波峰和波谷抵消,最后在屏幕上留下干涉条纹,看起来就像是斑马线。
第一次实验,我们对准双峰发射光束,实验的结果是在屏幕上产生了明暗相间的干涉条纹。这无疑说明,光确实是一种波,可以发生干涉。
这是否就说明波派胜利了?其实不然,上面你是发射的光束,你能不能改成一个个光子来发射。也就是我们上文说的光量子。粒派认为这样铁定是两道杠!
第二次实验:重复做上述过程,一个一个发射光子,起初由于光子的数量很少,在屏幕上出现了杂乱无章的图案,但是当光子数量增多时,神奇的事情发生了,屏幕上开始显示出了干涉条纹!
到这里先不谈波粒之间的竞争,因为出现了一个全新的问题,我们知道要想产生干涉条纹,必须得有两个波进行干涉,这就是为什么要开双峰的原因,但缝的话任何波都不会产生斑马线。
但是一个一个发射光子,单个光子要么经过右狭缝、要么经过左狭缝,单个光子在和谁发生干涉?难道它同时经过了双缝,并且和自己发生了关系?所以说波粒之争的事情在双缝实验上变得越来越复杂了。
如何解决这个问题?科学家想到了一个办法,我们可以在左右狭缝后加上光电探测器,来看一下单个光子到底是通过了哪条狭缝,还是它会分身分别经过了两条狭缝?
这里需要注明一点:观察粒子经过哪条狭缝这个实验,历史上使用的是电子而不是光子,因为我们可以向电子发射光子来进行探测它到底经过了哪个狭缝,而光子本身我们无法去探测,所以使用光子的实验我们本身也做不出来,不过这不影响我们的思想实验。
第三次实验:还是以点射的方式发射光子,探测的结果是,光子要么经过左狭缝,要么经过右狭缝,并没有分身,也没有同时经过两个狭缝,光子还是一个一个的粒子。
这时波派和粒派都松了一口气,这说明光子具有波粒二象性(其实粒子的性质也在光电效应上得到了证实),它即使波也是粒子,处在两种状态的叠加态,微观世界还真是诡异,粒子处在混沌的两面性。
但是到这里真正刷新人们三观的灵异事件发生了。
我们不就是探测了一下光子到底经过了哪个狭缝,居然导致了屏幕上的干涉条纹消失了,变成两道杠。这说明我们的观测行为导致了光子的状态发生了改变。
这也意味着我们的观测行为,影响了结果。这听起来十分的玄学,难道我们看不看一个事物能够改变它的最终状态。
观察者效应
微观世界毕竟离我们很远,我们无法体会到这件事道理灵异到了哪里。下面我就举个宏观世界的例子。足球这项运动看过吧。
足球运动员射球的一瞬间这个球进不进和足球当时所处的位置、运动员发力的大小和位置、风速等等这些物理因素有关,只要经过足够精细的科学分析,我们就能判断出这个球到底能不能进。
但是唯独没有关系的就是你当时有没有看这场比赛,你看与不看都不妨碍球是否能进。但是微观世界的实验告诉我们,球进与不进这个结果和你有没有看球有关。
这简直令人发狂,不可思议。尤其是当有些人给观察者这件事上加入了人类的意识以后,整件事情就变得更加的诡异了。
被搬倒了几千年的唯心主义差点复活。人类的意识可以改变宇宙的状态。
以上的实验都是在光子经过双缝的时候我们对其进行了观测,导致了光子的叠加态坍缩到了单一的量子态,表现出了粒子的特性。
那么我们这次让光子首先经过双缝,在它经过双缝的时候应该会保持原有的叠加状态,我们这时在以非常快的速度加上探测器,那么结果会怎么样?
不论我们加上探测器的速度有多快干涉条纹都会消失。反过来,一开始有探测器,只要在最后的一瞬间撤掉探测器,干涉条纹就会出现。
这次实验类似于惠勒的延迟选择实验,光子貌似是事先已经知道了我们要对它进行探测,在经过双缝时就表现出了粒子的特性导致干涉条纹消失。而我们只要停止观测,光子在双缝处又开始与自己发生干涉。
反过来说,我们未来的选择,决定了光子最初的状态!因为光子做出选择在先,我们观测在后。
在微观世界中,因果律貌似也失去了作用。这就是量子力学的世界,这就是微观世界的诡异和恐怖之处。
哥本哈根诠释
双缝干涉实验包含了量子力学中的三大基本原则:叠加态、不确定性、观察者。
叠加态是微观粒子的本质,一个粒子可以处在不同状态的混沌态,它具有多面性。以光子来说它就是波粒二象性。一个光子可以同时处在左缝和右缝这两种路径的叠加态中,可以同时穿过两条狭缝,并于自己发生干涉。
不确定性原理,也称为测不准原理,在微观世界中我们宏观世界中科学准确的预测性完全不起作用,微观粒子的行为只满足概率统计,我们不能准确的同时知道一个粒子的位置和动量。
这两个物理量的测量误差的乘积一定大于某个值,也就是说,如果我们准确的知道了一个粒子的位置,那么它的动量可能会是0到无穷大,变得十分不确定。
而在单个发射光子的时候,这个光子到底会落在屏幕的那个位置,我们无法准确的知道,只能说出它出现在某个位置的概率是多少。这一点和宏观世界有着本质的区别,需要用不同的理论去解释。
测量这件事会导致微观粒子的波函数发生坍缩,也就是从混沌的叠加态转变为确定的状态,例如,我们对光子(电子)的观测就导致了光子从叠加态坍缩到了粒子态。这样也会导致光子不能神奇同时处在两个路径的叠加态中,只能选择一个单一的狭缝经过,从而导致干涉条纹消失。
那么这跟人类的观察有何关系?
观察这个行为确是具有人为的因素,貌似是人的因素导致了量子态发生坍缩,导致结结果发生改变,甚至导致未来决定过去。
但是观察这种行为是怎样发生的呢?上文我已经提过,历史上对双缝实验的观察我们无法用光子做出来,而使用的是电子,因为在我们观察的时候,我们要想获得粒子的信息,就必须要使用另外一个粒子和其发生相互作用,来反馈给我们。
你想一下我们如何去观察电子?是不是要向电子发射一定能量的光子,当光子在被反射回来时,我们才能知道电子的状态。
没有这种交互作用,也就没有所谓的观察!但是这个测量的过程就会导致电子的状态被限制单一的状态中,换句话说,当电子穿过狭缝时,我们强迫电子与光子发生相互作用,正是这个过程导致电子波函数的坍缩。
所以说观察行为也是一种量子行为。跟人类的意识没有任何关系。
因为双缝实验的结果完全超出了人们平时的认知。双缝实验的结果使人们或多或少的对这个世界的真实性产生了怀疑。如果我们没有观测的时候,那些除了我们自己可以观测到的人和事以外,其他的很多人和事会不会都是以波函数形式存在。
当我们观测到某个人的时候,这个人就变得真实了,他(她)的过去、现在也就被确定了,而当我们不再观测这个人,那么他(她)是不是又回到了波函数的形式呢。
简单的讲,有一对处于量子纠缠态光子A和B,一个研究人员将光子B用来实验,另一个研究人员却“偷偷的”通过光子A来观测光子B的状态。由于量子纠缠的超距作用,研究人员就可以神不知、鬼不觉的观测用于实验的光子。
看到在这里,我们不得不佩服相关研究人员的脑洞,居然能想出这样的方法。然而事实上,这个实验的结果仍然和以前的相同:当有观测者的时候,根本就不会出现干涉条纹,而没有观测者的时候,干涉条纹又诡异的出现。
双缝实验的结果都是一样,即微观粒子就像是一个个有思想的、无所不知的精灵,当没有观测者的时候,它们是一个个波函数,而当它们知道有人在观测它的时候,它们马上就只表现出粒子性,从不例外。
参考资料来源:百度百科-双缝实验
之所以说其恐怖,是双缝干涉实验,这个实验当观察者出现的后,光线粒子的干涉会消失,然后变成两个条纹。好像这些光线粒子不喜欢别人的关注一样,看到就出现,不看到就不出现,这不得不让人涌起恐怖的怀疑!
当有人开始看一个物体的时候,这个物体就开始发出具有粒子特性的光,因此我们就看见了。当没有人观察的时候,这个物体就变成了波。通俗点来说,网络游戏在玩家们看来一直都是在不停的运行,无论我看还是不看,游戏都在那里。其实,根本就不是那样,我不看的时候,那边的游戏就停止了!
扩展资料:
双缝干涉实验介绍
在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。
参考资料:双缝实验_百度百科
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!
留言与评论(共有 0 条评论) |